The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant.
The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed.
Biological chemistry is a major frontier of inorganic chemistry. The three special volumes of Structure and Bonding devoted to Metal Sites in Proteins and Models address the questions: How unusual ("entatic") are metal sites in metalloproteins and metalloenzymes compared to those in small coordination complexes? And if they are special, how do polypeptide chains and co-factors control this? The chapters deal with iron, with metal centres acting as Lewis acids, metals in phosphate enzymes, with vanadium, and with the wide variety of transition metal ions which act as redox centres. They illustrate in particular how the combined armoury of genetics and structure determination at the molecular level are providing unprecedented new tools for molecular enginee
Chapters in this volume:
- Structural characterization of the Mn site in the photosynthetic oxygen-evolving complex
- Metal sites in small blue copper proteins, blue copper oxidases and vanadium-containing enzymes
- Structure and function of the xanthine-oxidase family of molybdenum enzymes
- Nickel-iron hydrogenases: Structural and functional properties
- Coordination sphere versus protein environment as determinants of electronic and functional properties of iron-sulfur proteins
- The bio-inorganic chemistry of tungsten
Please appreciate my work to rock these links:
DepositFiles
H. Allen O. Hill, Peter J. Sadler, Andrew J. Thomson - Metal Sites in Proteins and Models: Redox Centres
Labels: Chemistry